Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Exp Cell Res ; 434(1): 113867, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043723

RESUMO

Long-term stem cell survival in the cirrhotic liver niche to maintain therapeutic efficacy has not been achieved. In a well-defined diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis animal model, we previously showed that liver-resident stem/progenitor cells (MLpvNG2+ cells) or immune cells have improved survival in the fibrotic liver environment but died via apoptosis in the cirrhotic liver environment, and increased levels of hepatocyte growth factor (HGF) mediated this cell death. We tested the hypothesis that inhibiting HGF signaling during the cirrhotic phase could keep the cells alive. We used adeno-associated virus (AAV) vectors designed to silence the c-Met (HGF-only receptor) gene or a neutralizing antibody (anti-cMet-Ab) to block the c-Met protein in the DEN-induced liver cirrhosis mouse model transplanted with MLpvNG2+ cells between weeks 6 and 7 after DEN administration, which is the junction of liver fibrosis and cirrhosis at the site where most intrahepatic stem cells move toward apoptosis. After 4 weeks of treatment, the transplanted MLpvNG2+ cells survived better in c-Met-deficient mice than in wild-type mice, and cell activity was similar to that of the mice that received MLpvNG2+ cells at 5 weeks after DEN administration (liver fibrosis phase when most of these cells proliferated). Mechanistically, a lack of c-Met signaling remodeled the cirrhotic environment, which favored transplanted MLpvNG2+ cell expansion to differentiation into mature hepatocytes and initiate endogenous regeneration by promoting mature host hepatocyte generation and mediating functional improvements. Therapeutically, c-Met-mediated regeneration can be mimicked by anti-cMet-Ab to interfere functions, which is a potential drug for cell-based treatment of liver fibrosis/cirrhosis.


Assuntos
Fator de Crescimento de Hepatócito , Fígado , Animais , Camundongos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Cirrose Hepática/patologia , Hepatócitos/metabolismo , Células-Tronco/metabolismo , Regeneração Hepática
2.
Neural Regen Res ; 19(5): 1078-1083, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862211

RESUMO

Traumatic brain injury is a severe health problem leading to autophagy and apoptosis in the brain. 3,6-Dibromo-beta-fluoro-N-(3-methoxyphenyl)-9H-carbazole-9-propanamine (P7C3-A20) can be neuroprotective in various diseases, including ischemic stroke and neurodegenerative diseases. However, whether P7C3-A20 has a therapeutic effect on traumatic brain injury and its possible molecular mechanisms are unclear. Therefore, in the present study, we investigated the therapeutic effects of P7C3-A20 on traumatic brain injury and explored the putative underlying molecular mechanisms. We established a traumatic brain injury rat model using a modified weight drop method. P7C3-A20 or vehicle was injected intraperitoneally after traumatic brain injury. Severe neurological deficits were found in rats after traumatic brain injury, with deterioration in balance, walking function, and learning memory. Furthermore, hematoxylin and eosin staining showed significant neuronal cell damage, while terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining indicated a high rate of apoptosis. The presence of autolysosomes was observed using transmission electron microscope. P7C3-A20 treatment reversed these pathological features. Western blotting showed that P7C3-A20 treatment reduced microtubule-associated protein 1 light chain 3-II (LC3-II) autophagy protein, apoptosis-related proteins (namely, Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 [BNIP3], and Bcl-2 associated x protein [Bax]), and elevated ubiquitin-binding protein p62 (p62) autophagy protein expression. Thus, P7C3-A20 can treat traumatic brain injury in rats by inhibiting excessive autophagy and apoptosis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37703117

RESUMO

PreS/S gene mutations could impact virus secretion, infection and immune evasion. However, the relationship between PreS/S mutations and intrauterine transmission has not yet been clarified. Thus, we aimed to explore the associations between PreS/S gene mutations of HBV isolated from mothers and intrauterine transmission. We analyzed the mutations of PreS/S regions of the HBV genome in mothers with HBV DNA levels ≥ 106 IU/mL whose neonates experienced HBV intrauterine transmission (transmission group, GT) and those whose neonates did not experience intrauterine transmission (control group, GC) analyzed using clone-based sequencing. In total, 206 sequences were successfully amplified, including 98 sequences (from 21 mothers) from GT and 108 sequences (from 20 mothers) from GC of genotype C for mutational analysis. Among the 1203 nucleotides of PreS/S regions, there were 219 (18.20%) base substitutions, of which 103 (47.03%) base mutations caused amino acid changes. F80S, A90V and I68T were mutation hotspots. Mothers in GT had a higher mutation rate of A90V in the PreS1 gene than mothers in GC. The A90V mutation increased the risk of HBV intrauterine transmission after adjusting the maternal age and the mode of delivery (OR = 6.23, 95% CI: 1.18-32.97). Moreover, the area under the ROC curve (AUC) for intrauterine transmission due to A90V and a combination of A90V with the mode of delivery were 0.723 (95% CI: 0.575 to 0.891, P = 0.011) and 0.848 (95% CI: 0.723 to 0.972, P < 0.001), respectively. Mothers with the A90V mutation in the PreS1 gene may be a potential risk factor for HBV intrauterine transmission.


Assuntos
Vírus da Hepatite B , Humanos , Recém-Nascido , Vírus da Hepatite B/genética , Genótipo , Mutação , Fatores de Risco
4.
J Am Chem Soc ; 145(35): 19274-19282, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37585588

RESUMO

To promote the commercialization of direct formic acid fuel cell (DFAFC), it is vital to explore new types of direct formic acid oxidation (FAOR) catalysts with high activity and direct pathway. Here, we report the synthesis of intermetallic platinum-lead/platinum nanoplates inlaid with sub-monolayer antimony oxide surface (PtPb/Pt@sub-SbOx NPs) for efficient catalytic applications in FAOR. Impressively, they can achieve the remarkable FAOR specific and mass activities of 28.7 mA cm-2 and 7.2 A mgPt-1, which are 151 and 60 times higher than those of the state-of-the-art commercial Pt/C, respectively. Furthermore, the X-ray photoelectron spectroscopy and X-ray absorption spectroscopy results collectively reveal the optimization of the local coordination environment by the surface sub-monolayer SbOx, along with the electron transfer from Pb and Sb to Pt, driving the predominant dehydrogenation process. The sub-monolayer SbOx on the surface can effectively attenuate the CO generation, largely improving the FAOR performance of PtPb/Pt@sub-SbOx NPs. This work develops a class of high-performance Pt-based anodic catalyst for DFAFC via constructing the unique intermetallic core/sub-monolayer shell structure.

5.
Chin Med J (Engl) ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620294

RESUMO

BACKGROUND: Although overnight fasting is recommended prior to endoscopic retrograde cholangiopancreatography (ERCP), the benefits and safety of high-carbohydrate fluid diet (CFD) intake 2 h before ERCP remain unclear. This study aimed to analyze whether high-CFD intake 2 h before ERCP can be safe and accelerate patients' recovery. METHODS: This prospective, multicenter, randomized controlled trial involved 15 tertiary ERCP centers. A total of 1330 patients were randomized into CFD group (n = 665) and fasting group (n = 665). The CFD group received 400 mL of maltodextrin orally 2 h before ERCP, while the control group abstained from food/water overnight (>6 h) before ERCP. All ERCP procedures were performed using deep sedation with intravenous propofol. The investigators were blinded but not the patients. The primary outcomes included postoperative fatigue and abdominal pain score, and the secondary outcomes included complications and changes in metabolic indicators. The outcomes were analyzed according to a modified intention-to-treat principle. RESULTS: The post-ERCP fatigue scores were significantly lower at 4 h (4.1 ± 2.6 vs. 4.8 ± 2.8, t = 4.23, P <0.001) and 20 h (2.4 ± 2.1 vs. 3.4 ± 2.4, t = 7.94, P <0.001) in the CFD group, with least-squares mean differences of 0.48 (95% confidence interval [CI]: 0.26-0.71, P <0.001) and 0.76 (95% CI: 0.57-0.95, P <0.001), respectively. The 4-h pain scores (2.1 ± 1.7 vs. 2.2 ± 1.7, t = 2.60, P = 0.009, with a least-squares mean difference of 0.21 [95% CI: 0.05-0.37]) and positive urine ketone levels (7.7% [39/509] vs. 15.4% [82/533], χ2 = 15.13, P <0.001) were lower in the CFD group. The CFD group had significantly less cholangitis (2.1% [13/634] vs. 4.0% [26/658], χ2 = 3.99, P = 0.046) but not pancreatitis (5.5% [35/634] vs. 6.5% [43/658], χ2 = 0.59, P = 0.444). Subgroup analysis revealed that CFD reduced the incidence of complications in patients with native papilla (odds ratio [OR]: 0.61, 95% CI: 0.39-0.95, P = 0.028) in the multivariable models. CONCLUSION: Ingesting 400 mL of CFD 2 h before ERCP is safe, with a reduction in post-ERCP fatigue, abdominal pain, and cholangitis during recovery. TRAIL REGISTRATION: ClinicalTrials.gov, No. NCT03075280.

6.
Anim Biosci ; 36(12): 1918-1925, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641836

RESUMO

OBJECTIVE: The objective of this study was to evaluate the effect of biogas slurry application on biomass production and the silage quality of corn. METHODS: A field experiment was conducted in which corn was grown using different biogas slurry application rates. The effect of 25% to 500% biogas slurry nitrogen replacement (T1 to T14) on the yield and quality indices of corn were studied by field plot experiments. RESULTS: The results revealed that biogas slurry application improved the stem diameter and relative feed value of corn silage in treatments T13 and T11. Moreover, the fermentation quality of corn silage was improved due to an increase in lactic acid content; in comparison with the chemical synthetic fertilizer (CF) group. The crude protein contents of corn silage had no obvious change with increasing biogas slurry application. However, the forage quality index of acid detergent fiber was decreased (p<0.05) in the T11 group compared with the CF group. In addition, higher (p<0.05) 30 h in vitro dry matter digestibility and 30 h in vitro neutral detergent fiber digestibility were observed in the T11 and T13 groups than in the CF group. CONCLUSION: Based on these results, it was concluded that the optimum biogas slurry application rate for corn was approximately 350% to 450% biogas slurry nitrogen replacement under the present experimental conditions.

7.
Front Immunol ; 14: 1162439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614233

RESUMO

Allostimulated CD8+ T cells (aCD8+ T cells), as the main mediators of acute liver rejection (ARJ), are hyposensitive to apoptosis due to the inactivation of death receptor FAS-mediated pathways and fail to allow tolerance induction, eventually leading to acute graft rejection. Although tacrolimus (FK506), the most commonly used immunosuppressant (IS) in the clinic, allows tolerance induction, its use is limited because its target immune cells are unknown and it is associated with increased incidences of malignancy, infection, and nephrotoxicity, which substantially impact long-term liver transplantation (LTx) outcomes. The dark agouti (DA)-to-Lewis rat LTx model is a well-known ARJ model and was hence chosen for the present study. We show that both hepatocyte growth factor (HGF) (cHGF, containing the main form of promoting HGF production) and recombinant HGF (h-rHGF) exert immunoregulatory effects mainly on allogeneic aCD8+ T cell suppression through FAS-mediated apoptotic pathways by inhibiting cMet to FAS antagonism and Fas trimerization, leading to acute tolerance induction. We also showed that such inhibition can be abrogated by treatment with neutralizing antibodies against cMet (HGF-only receptor). In contrast, we did not observe these effects in rats treated with FK506. However, we observed that the effect of anti-rejection by FK506 was mainly on allostimulated CD4+ T cell (aCD4+ T cell) suppression and regulatory T cell (Treg) promotion, in contrast to the mechanism of HGF. In addition, the protective mechanism of HGF in FK506-mediated nephrotoxicity was addressed. Therefore, HGF as a tolerance inducer, whether used in combination with FK506 or as monotherapy, may have good clinical value. Additional roles of these T-cell subpopulations in other biological systems and studies in these fields will also be meaningful.


Assuntos
Fator de Crescimento de Hepatócito , Tacrolimo , Animais , Ratos , Aloenxertos , Linfócitos T CD8-Positivos , Fígado , Ratos Endogâmicos Lew , Tacrolimo/farmacologia
8.
Talanta ; 265: 124931, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451121

RESUMO

Rapid, efficient, specific and sensitive diagnostic techniques are critical for selecting appropriate treatments for drug-resistant bacterial infections. To address this challenge, we have developed a novel diagnostic method, called the Dual-Cas Tandem Diagnostic Platform (DTDP), which combines the use of Cas9 nickase (Cas9n) and Cas12a. DTDP works by utilizing the Cas9n-sgRNA complex to create a nick in the target strand's double-stranded DNA (dsDNA). This prompts DNA polymerase to displace the single-stranded DNA (ssDNA) and leads to cycles of DNA replication through nicking, displacement, and extension. The ssDNA is then detected by the Cas12a-crRNA complex (which is PAM-free), activating trans-cleavage and generating a fluorescent signal from the fluorescent reporter. DTDP exhibits a high sensitivity (1 CFU/mL or 100 ag/µL), high specificity (specifically to MRSA in nine pathogenic species), and excellent accuracy (100%). The dual RNA recognition process in our method improves diagnostic specificity by decreasing the limitations of Cas12a in detecting dsDNA protospacer adjacent motifs (PAMs) and leverages multiple advantages of multi-Cas enzymes in diagnostics. This novel approach to pathogenic microorganism detection has also great potential for clinical diagnosis.

9.
BMC Cancer ; 23(1): 649, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438709

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common renal malignancy, although newly developing targeted therapy and immunotherapy have been showing promising effects in clinical treatment, the effective biomarkers for immune response prediction are still lacking. The study is to construct a gene signature according to ccRCC immune cells infiltration landscape, thus aiding clinical prediction of patients response to immunotherapy. METHODS: Firstly, ccRCC transcriptome expression profiles from Gene Expression Omnibus (GEO) database as well as immune related genes information from IMMPORT database were combine applied to identify the differently expressed meanwhile immune related candidate genes in ccRCC comparing to normal control samples. Then, based on protein-protein interaction network (PPI) and following module analysis of the candidate genes, a hub gene cluster was further identified for survival analysis. Further, LASSO analysis was applied to construct a signature which was in succession assessed with Kaplan-Meier survival, Cox regression and ROC curve analysis. Moreover, ccRCC patients were divided as high and low-risk groups based on the gene signature followed by the difference estimation of immune treatment response and exploration of related immune cells infiltration by TIDE and Cibersort analysis respectively among the two groups of patients. RESULTS: Based on GEO and IMMPORT databases, a total of 269 differently expressed meanwhile immune related genes in ccRCC were identified, further PPI network and module analysis of the 269 genes highlighted a 46 genes cluster. Next step, Kaplan-Meier and Cox regression analysis of the 46 genes identified 4 genes that were supported to be independent prognosis indicators, and a gene signature was constructed based on the 4 genes. Furthermore, after assessing its prognosis indicating ability by both Kaplan-Meier and Cox regression analysis, immune relation of the signature was evaluated including its association with environment immune score, Immune checkpoint inhibitors expression as well as immune cells infiltration. Together, immune predicting ability of the signature was preliminary explored. CONCLUSIONS: Based on ccRCC genes expression profiles and multiple bioinformatic analysis, a 4 genes containing signature was constructed and the immune regulation of the signature was preliminary explored. Although more detailed experiments and clinical trials are needed before potential clinical use of the signature, the results shall provide meaningful insight into further ccRCC immune researches.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Prognóstico , Neoplasias Renais/genética , Imunoterapia
10.
Biosensors (Basel) ; 13(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37366946

RESUMO

Exonuclease III (Exo III) has been generally used as a double-stranded DNA (dsDNA)-specific exonuclease that does not degrade single-stranded DNA (ssDNA). Here, we demonstrate that Exo III at concentrations above 0.1 unit/µL can efficiently digest linear ssDNA. Moreover, the dsDNA specificity of Exo III is the foundation of many DNA target recycling amplification (TRA) assays. We demonstrate that with 0.3 and 0.5 unit/µL Exo III, the degradation of an ssDNA probe, free or fixed on a solid surface, was not discernibly different, regardless of the presence or absence of target ssDNA, indicating that Exo III concentration is critical in TRA assays. The study has expanded the Exo III substrate scope from dsDNA to both dsDNA and ssDNA, which will reshape its experimental applications.


Assuntos
Técnicas Biossensoriais , DNA de Cadeia Simples , Exodesoxirribonucleases , DNA/metabolismo , Limite de Detecção
11.
J Am Chem Soc ; 145(28): 15109-15117, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37289521

RESUMO

Designing platinum (Pt)-based formic acid oxidation reaction (FAOR) catalysts with high performance and high selectivity of direct dehydrogenation pathway for direct formic acid fuel cell (DFAFC) is desirable yet challenging. Herein, we report a new class of surface-uneven PtPbBi/PtBi core/shell nanoplates (PtPbBi/PtBi NPs) as the highly active and selective FAOR catalysts, even in the complicated membrane electrode assembly (MEA) medium. They can achieve unprecedented specific and mass activities of 25.1 mA cm-2 and 7.4 A mgPt-1 for FAOR, 156 and 62 times higher than those of commercial Pt/C, respectively, which is the highest for a FAOR catalyst by far. Simultaneously, they show highly weak adsorption of CO and high dehydrogenation pathway selectivity in the FAOR test. More importantly, the PtPbBi/PtBi NPs can reach the power density of 161.5 mW cm-2, along with a stable discharge performance (45.8% decay of power density at 0.4 V for 10 h), demonstrating great potential in a single DFAFC device. The in situ Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) results collectively reveal a local electron interaction between PtPbBi and PtBi. In addition, the high-tolerance PtBi shell can effectively inhibit the production/adsorption of CO, resulting in the complete presence of the dehydrogenation pathway for FAOR. This work demonstrates an efficient Pt-based FAOR catalyst with 100% direct reaction selectivity, which is of great significance for driving the commercialization of DFAFC.

12.
Anal Chim Acta ; 1256: 341154, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37037633

RESUMO

Antibiotic usage has become very widespread in aquaculture, and the abuse or overuse of antibiotics has led to the evolution of antibiotic-resistance bacteria, which has adverse effects on aquatic products and ecosystems. Moreover, this evolution can potentially cause harm to human health. Thus, there is an urgent need for diagnostic tools for antibiotic-resistant microorganisms. Herein, we proposed a signal-off Cas14a1-based platform (SOCP) for the detection of methicillin-resistant Staphylococcus aureus (MRSA). In this SOCP, we have designed single-stranded DNA (ssDNA) that not only can activate the trans-cleavage ability of dual Cas14a1-sgRNA complex but also can be used as the primers for the amplified methicilin-resistant gene (mecA). When MRSA is present, the primers can be transformed into products with amplification, leading to the signal decrease of trans-cleavage activity of Cas14a1. The SOCP showed high specificity and fair sensitivity for mecA gene and MRSA. In the detection of real samples, this platform also showed consistent results compared with qPCR. The SOCP could provide an alternative tool for the diagnosis of antibiotic-resistant bacteria in aquaculture, food industry and other fields.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Proteínas de Ligação às Penicilinas/genética , Resistência a Meticilina/genética , Ecossistema , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia
13.
Materials (Basel) ; 16(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37109859

RESUMO

High-purity scandium oxide is the principal raw material of high-purity scandium metal and aluminum scandium alloy targets for electronic materials. The performance of electronic materials will be significantly impacted by the presence of trace amounts of radionuclides due to the increase in free electrons. However, about 10 ppm of Th and 0.5-20 ppm of U are typically present in commercially available high-purity scandium oxide, which it is highly necessary to remove. It is currently challenging to detect trace impurities in high-purity scandium oxide, and the detection range of trace thorium and uranium is relatively high. Therefore, it is crucial to develop a technique that can accurately detect trace Th and U in high concentrations of scandium solution in the research on high-purity scandium oxide quality detection and the removal of trace impurities. This paper adopted some advantageous initiatives to develop a method for the inductively coupled plasma optical emission spectrometry (ICP-OES) determination of Th and U in high-concentration scandium solutions, such as spectral line selection, matrix influence analysis, and spiked recovery. The reliability of the method was verified. The relative standard deviations (RSD) of Th is less than 0.4%, and the RSD of U is less than 3%, indicating that this method has good stability and high precision. This method can be used for the accurate determination of trace Th and U in high Sc matrix samples, which provides an effective technical support for the preparation of high purity scandium oxide, and supports the production of high-purity scandium oxide.

14.
Nanoscale Horiz ; 8(6): 767-775, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36988068

RESUMO

Since the discovery of graphene in an atomic thin layer format, many investigations have been conducted to search for two-dimensional (2D) layered materials, in which 3d-transition metals offer much new physics and great freedom of tunability. In this work, through electron-beam irradiation, we enable the manufacture of a new 2D Ti nanosheet from a suspension of Ti0.91O2 nanosheets. In state-of-the-art density functional theory (DFT), both empirical and linear response theory predicted that Hubbard Ueff values would be imposed, resulting in unstable phonon dispersion curves. In the end, the newly found Ti monolayer is confirmed to be a non-magnetic superconductor, with a medium level of electron-phonon coupling. The newly established Ti layer is quite robust under strain, and the evolution of local Dirac points in electronic bands is also analyzed in terms of linearity and energetic shift near the Fermi energy. As suggested by the Fermi surface, this metal monolayer experiences an electronic topological transition under strain. Our findings will encourage many more explorations of pure d metal-based isotopic monolayers with diverse structures and open a new playground for 2D superconductors and ultra-thin sensoring components.

15.
Redox Rep ; 28(1): 2187564, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36932927

RESUMO

Objective: Hydroxytyrosol (HT) is a polyphenol with a wide range of biological activities. Excessive drinking can lead to oxidative stress and inflammation in the liver, which usually develop into alcohol liver disease (ALD). At present, there is no specific drug to treat ALD. In this paper, the protection effect of HT on ALD and the underline mechanism were studied.Methods: HepG2 cells were exposed to ethanol in vitro and C57BL/6J mice were fed with a Lieber-DeCarli ethanol liquid diet in vivo.Results: triglyceride (TG) level in serum and the expression of fatty acid synthase (FASN) were reduced significantly by the treatment with HT The acetaldehyde dehydrogenase (ALDH) activity was increased, the serum level of malondialdehyde (MDA) was decreased, catalase (CAT) and glutathione (GSH) were increased, suggesting that HT may reduce its oxidative damage to the body by promoting alcohol metabolism. Furthermore, according to the mRNA levels of tnf-α, il-6 and il-1ß, HT inhibited ethanol-induced inflammation significantly. The anti-inflammatory mechanism of HT may be related to suppress the STAT3/iNOS pathway.Dissussion: Our study showed that HT could ameliorate ethanol-induced hepatic steatosis, oxidative stress and inflammation and provide a new candidate for the prevention and treatment of ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fígado Gorduroso , Hepatopatias Alcoólicas , Animais , Camundongos , Etanol/toxicidade , Etanol/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos C57BL , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Glutationa/metabolismo
16.
Phys Chem Chem Phys ; 25(15): 10635-10646, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37000580

RESUMO

The electrification of heavy-duty transport and aviation urgently requires new strategies to develop high-rate lithium-ion batteries (LIBs) whose performance fundamentally relies on electrode materials. However, commercially available graphite anodes still suffer from slow kinetics of lithium-ion diffusion and severe safety concerns of lithium plating when achieving the high-rate use goal. Herein, taking Ti3C2Tx as an example, it is demonstrated that N and S co-doping in Ti3C2Tx results in a high-rate MXene anode for LIBs. Nitrogen doping not only flattens the MXene layers and expands the interlayer spacing but also increases the Ti valence state change ability. As evidenced by density functional theory calculations, the diffusion barriers of S-containing Ti3C2Tx MXenes are lower than those of the S-free counterpart, suggesting that S plays an essential role in achieving high-rate performance. Therefore, the N and S co-doped Ti3C2Tx anode in LIBs exhibited excellent performance with a reversible capacity of 113.8 mA h g-1 at a rate of 3C and ∼89% capacity retention after 1000 charge/discharge cycles. The high capacity is attributed to the change in the oxidation states of both Ti and O elements, and the tiny volume change within ∼0.6% upon the stable charging/discharging process accounts for the good capacity retention. When paired up with a LiFe0.5Mn0.5PO4 cathode, the full cell delivers a reversible capacity of 134 mA h g-1 after 1000 cycles at a high rate of 1C. The demonstration of N and S co-doped Ti3C2Tx MXenes in this work may offer a feasible approach for high-rate intercalation anode materials.

17.
BMC Med Genomics ; 16(1): 30, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803385

RESUMO

BACKGROUND: Osteosarcoma has been the most common primary bone malignant tumor in children and adolescents. Despite the considerable improvement in the understanding of genetic events attributing to the rapid development of molecular pathology, the current information is still lacking, partly due to the comprehensive and highly heterogeneous nature of osteosarcoma. The study is to identify more potential responsible genes during the development of osteosarcoma, thus identifying promising gene indicators and aiding more precise interpretation of the disease. METHODS: Firstly, from GEO database, osteosarcoma transcriptome microarrays were used to screen the differential expression genes (DEGS) in cancer comparing to normal bone samples, followed by GO/KEGG interpretation, risk score assessment and survival analysis of the genes, for the purpose of selecting a credible key gene. Further, the basic physicochemical properties, predicted cellular location, gene expression in human cancers, the association with clinical pathological features and potential signaling pathways involved in the key gene's regulation on osteosarcoma development were in succession explored. RESULTS: Based on the selected GEO osteosarcoma expression profiles, we identified the differential expression genes in osteosarcoma versus normal bone samples, and the genes were classified into four groups based on the difference level, further genes interpretation indicated that the high differently level (> 8 fold) genes were mainly located extracellular and related to matrix structural constituent regulation. Meanwhile, module function analysis of the 67 high differential level (> 8 fold) DEGS revealed a 22-gene containing extracellular matrix regulation associated hub gene cluster. Further survival analysis of the 22 genes revealed that STC2 was an independent prognosis indicator in osteosarcoma. Moreover, after validating the differential expression of STC2 in cancer vs. normal tissues using local hospital osteosarcoma samples by IHC and qRT-PCR experiment, the gene's physicochemical property revealed STC2 as a cellular stable and hydrophilic protein, and the gene's association with osteosarcoma clinical pathological parameters, expression in pan-cancers and the probable biological functions and signaling pathways it involved were explored. CONCLUSION: Using multiple bioinformatic analysis and local hospital samples validation, we revealed the gain of expression of STC2 in osteosarcoma, which associated statistical significantly with patients survival, and the gene's clinical features and potential biological functions were also explored. Although the results shall provide inspiring insights into further understanding of the disease, further experiments and detailed rigorous clinical trials are needed to reveal its potential drug-target role in clinical medical use.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Criança , Humanos , Transcriptoma , Progressão da Doença , Osteossarcoma/genética , Osteossarcoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Fatores de Risco , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
18.
Cell Prolif ; 56(6): e13396, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36593753

RESUMO

The pluripotent stem cells exist in a narrow window during early development and its derivation depends on intrinsic and extrinsic growth signalling in vitro. It has remained challenging to derive two or three distinct cell lines that are representative of blastocyst-stage lineages from one preimplantation embryo simultaneously in a chemical defined condition. Therefore, it is desirable to establish a system by manipulating extrinsic signalling in culture to derive multiple types of stem cells from a single blastocyst. This study used a defined medium containing Activin A, WNT activator and LIF (ACL medium), enabling establishment of ACL-ESCs and ACL-XEN cells from one blastocyst. ACL-blastoids were generated by suspending ACL-ESCs and ACL-XEN cells with ACL-blastoid medium in three-dimensional culture system. Lineage markers expression of ACL-blastoids were performed by immunofluorescence. Our results indicate that ACL-ESCs and ACL-XEN cells derived from one blastocyst represent ICM and PrE lineages. Importantly, we obtained ACL-blastoid from ACL-ESCs and ACL-XEN cells self-aggregation, partially recapitulating early development and initiation of early implantation events. This study would not only provide ACL culture system for derivation and maintenance of two types of cell lines corresponding to ICM as well as PrE, but also reconstruct blastoids with them to deepen our understanding of early embryogenesis and widen insights into translational application of stem cells.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes , Endoderma , Blastocisto/metabolismo , Linhagem Celular , Diferenciação Celular
19.
Cell Death Discov ; 9(1): 13, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658107

RESUMO

Intrahepatic stem/progenitor cells and cytotoxic CD8+ T cells (CD8+ T cells) in the cirrhotic liver undergo apoptosis, which potentially facilitates progression to cancer. Here, we report that hepatocyte growth factor (HGF) signaling plays an important role in promoting normal and damaged liver CD8+ T cell Fas-mediated apoptosis through its only receptor, c-Met. In addition to binding with HGF, c-Met also binds to Fas to form a complex. Using a diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis mouse model, immunostaining, and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining, we found that HGF secretion was significantly higher at 10 weeks post-DEN, the liver cirrhotic phase (LCP), than at 3 weeks post-DEN, the liver fibrotic phase (LFP). Correspondingly, differences in CD8+ T cell proliferation and apoptosis were noted between the two phases. Interestingly, staining and TUNEL assays revealed lower smooth muscle actin (α-SMA)+ cell apoptosis, a marker for hepatic stellate cells (HSCs), in the LFP group than in the LCP group, which suggested a beneficial correlation among HGF, CD8+ T cells and HSCs in improving the fibrotic load during damaged liver repair. In cultures, when met different concentrations of recombinant HGF (rHGF), phytohemagglutinin (PHA)-stimulated naive mouse splenic CD8+ T cells (pn-msCD8+ T cells) responded differently; as increases in rHGF increased were associated with decreases in the clonal numbers of pn-msCD8+ T cells, and when the rHGF dose was greater than 200 ng/mL, the clonal numbers significantly decreased. In the presence of 400 ng/mL rHGF, the death-inducing signaling complex (DISC) can be directly activated in both nsCD8+ T cells and healthy human peripheral blood CD8+ T cells (hp-CD8+ T cells), as indicated by recruitment of FADD and caspase-8 because DISC forms via the recruitment of FADD and caspase-8, among others. These findings suggest that Fas-mediated apoptosis, may also indicate a regulatory role of HGF signaling in hepatic homeostasis.

20.
Theranostics ; 13(2): 611-620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632232

RESUMO

Inspired by the attractions of fruit flies to polyamines of rotten food, we developed a facile, bio-orthogonal, supramolecular homing and hunting strategy, relying on the elevated levels of polyamines in tumor as the natural guest cues to attract cucurbit [7] uril (CB[7]) functionalized liposomes to the tumor site, owing to the strong, bio-orthogonal host-guest interactions between CB[7] and polyamines. This supramolecular homing enabled a high targeting efficiency of CB[7] functionalized liposomes, and allowed better tissue penetration and retention in breast tumor. The employment of a receptor functionalized nanomedicine for direct tropism towards endogenous biomarkers as guest cues, reminiscent of natural chemotaxis but in a bio-orthogonal manner, has not been previously reported, offering new sights to the design and development of new nanoformulations that rely on bio-orthogonal interactions for chemotaxis-guided targeting.


Assuntos
Neoplasias , Poliaminas , Humanos , Sinais (Psicologia) , Lipossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...